Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Front Pain Res (Lausanne) ; 3: 856252, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35599968

RESUMO

Estimates suggest that 10-40% of lumbar spine surgery patients experience persistent post-surgical pain (PPSP). PPSP is associated with 50% greater healthcare costs, along with risks of emotional distress and impaired quality of life. In 2019, U.S. Health and Human Services identified brief and digital behavioral treatments as important for pain management after surgery. Indeed, brief behavioral pain treatments delivered in the perioperative period may offer patients a low burden opportunity to acquire essential pain coping strategies for enhanced surgical recovery. Additionally, the COVID-19 pandemic has diminished in-person pain treatment access during extended perioperative time frames, thus underscoring the need for on-line options and home based care. This report describes the integration of an online, live-instructor delivered single-session pain self-management intervention (Empowered Relief) into the standard of care for lumbar spine surgery. Here, we apply the RE-AIM framework; describe systems implementation of the Empowered Relief intervention in a large, academic medical center during the COVID-19 pandemic; describe operational challenges and financial considerations; and present patient engagement data. Finally, we discuss the scalable potential of Empowered Relief and other single-session interventions in surgical populations, their importance during extended perioperative periods, practical and scientific limitations, and new directions for future research on this topic.

2.
Microbiol Resour Announc ; 11(4): e0011922, 2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35323016

RESUMO

We report the coding-complete genome sequences of 25 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sublineage B.1.1.529 Omicron strains obtained from Bangladeshi individuals in samples collected between December 2021 and January 2022. Genomic data were generated by Nanopore sequencing using the amplicon sequencing approach developed by the ARTIC Network.

3.
BMC Genomics ; 10: 302, 2009 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-19583835

RESUMO

BACKGROUND: The Gram-negative bacterium Photorhabdus asymbiotica (Pa) has been recovered from human infections in both North America and Australia. Recently, Pa has been shown to have a nematode vector that can also infect insects, like its sister species the insect pathogen P. luminescens (Pl). To understand the relationship between pathogenicity to insects and humans in Photorhabdus we have sequenced the complete genome of Pa strain ATCC43949 from North America. This strain (formerly referred to as Xenorhabdus luminescens strain 2) was isolated in 1977 from the blood of an 80 year old female patient with endocarditis, in Maryland, USA. Here we compare the complete genome of Pa ATCC43949 with that of the previously sequenced insect pathogen P. luminescens strain TT01 which was isolated from its entomopathogenic nematode vector collected from soil in Trinidad and Tobago. RESULTS: We found that the human pathogen Pa had a smaller genome (5,064,808 bp) than that of the insect pathogen Pl (5,688,987 bp) but that each pathogen carries approximately one megabase of DNA that is unique to each strain. The reduced size of the Pa genome is associated with a smaller diversity in insecticidal genes such as those encoding the Toxin complexes (Tc's), Makes caterpillars floppy (Mcf) toxins and the Photorhabdus Virulence Cassettes (PVCs). The Pa genome, however, also shows the addition of a plasmid related to pMT1 from Yersinia pestis and several novel pathogenicity islands including a novel Type Three Secretion System (TTSS) encoding island. Together these data suggest that Pa may show virulence against man via the acquisition of the pMT1-like plasmid and specific effectors, such as SopB, that promote its persistence inside human macrophages. Interestingly the loss of insecticidal genes in Pa is not reflected by a loss of pathogenicity towards insects. CONCLUSION: Our results suggest that North American isolates of Pa have acquired virulence against man via the acquisition of a plasmid and specific virulence factors with similarity to those shown to play roles in pathogenicity against humans in other bacteria.


Assuntos
Hibridização Genômica Comparativa , Genoma Bacteriano , Photorhabdus/genética , Photorhabdus/patogenicidade , Animais , Linhagem Celular , Doenças Transmissíveis Emergentes/microbiologia , DNA Bacteriano/genética , Infecções por Enterobacteriaceae/microbiologia , Ilhas Genômicas , Genômica , Humanos , Camundongos , Mariposas/microbiologia , América do Norte , Photorhabdus/isolamento & purificação , Plasmídeos , Análise de Sequência de DNA , Especificidade da Espécie , Virulência
4.
BMC genomics ; 2009: [1-22], 2009. ilusgraf^ctab
Artigo em Inglês | MedCarib | ID: med-17872

RESUMO

BACKGROUND: The gram-negative bacterium Photorhabdus asymbiotica (Pa) has been recovered from human infections in both North America and Australia. Recently, Pa has been shown to have a nematode vector that can also infect insects, like its sister species the insect pathogen P. luminescens (Pl). To understand the relationship between pathogenicity to insects and humans in Photorhabdus we have sequenced the complete genome of Pa strain ATCC43949 from North America. This strain (formerly referred to as Xenorhabdus luminescens strain 2) was isolated in 1977 from the blood of an 80 year old female patient with endocarditis, in Maryland, USA. Here we compare the complete genome of Pa ATCC43949 with that of the previously sequenced insect pathogen P. luminescens strain TT01 which was isolated from its entomopathogenic nematode vector collected from soil in Trinidad and Tobago. RESULTS: We found that the human pathogen Pa had a smaller genome (5,064,808 bp) than that of the insect pathogen Pl (5,688,987 bp) but that each pathogen carries approximately one megabase of DNA that is unique to each strain. The reduced size of the Pa genome is associated with a smaller diversity in insecticidal genes such as those encoding the Toxin complexes (Tc's), Makes caterpillars floppy (Mcf) toxins and the Photorhabdus Virulence Cassettes (PVCs). The Pa genome, however, also shows the addition of a plasmid related to pMT1 from Yersinia pestis and several novel pathogenicity islands including a novel Type Three Secretion System (TTSS) encoding island. Together these data suggest that Pa may show virulence against man via the acquisition of the pMT1-like plasmid and specific effectors, such as SopB, that promote its persistence inside human macrophages. Interestingly the loss of insecticidal genes in Pa is not reflected by a loss of pathogenicity towards insects...


Assuntos
Humanos , Genômica , Photorhabdus , Trinidad e Tobago
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...